
Available online at www.sciencedirect.com
Tetrahedron Letters 49 (2008) 552–556
Synthesis and structure of polyunsaturated
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Abstract—The polyunsaturated [10]cyclophane 4 was synthesized from 1,4-diacetylbenzene by a four-step sequence involving the
modified Yasunami azulene synthesis, introduction of two butenone units, and a subsequent McMurry coupling reaction. The crys-
tal structures of 4 and the synthetic intermediate 8 was determined by X-ray crystallographic analysis and the results reveal that (1)
the benzene ring of 4 is distorted as a boat form with relatively small bending angles and (2) the azulene rings of 8 show large out-of-
plane deformation along the short azulene molecular axis.
� 2007 Elsevier Ltd. All rights reserved.
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Unsaturation at the bridging part of cyclophane1 is a
challenging subject in cyclophane chemistry. Recent
synthesis of highly unsaturated cyclophanes, such as
cyclophynes,2 toward carbon-rich aromatics has been
extensively studied.3 The polyunsaturation of the bridg-
ing part of [10]paracyclophane (1), particularly those
with a polyvinyl unit,4 in context of its molecular distor-
tion, and CH–p and p–p interactions between the bridg-
ing part and benzene ring has interested us. DFT
calculations5 for all-cis- and cis,trans,cis,trans,cis-pent-
aene, 2 and 3, predict the following: For 2, all-s-cis
structure has not been generated but the s-cis–trans–
trans–cis structure was obtained. Both 2 and 3 possess
a slightly bent benzene ring, and the latter has a slightly
lower total energy than the former.6 A p–p interaction in
2 and CH–p interaction in 3 is possible; the minimum
distance between a bridging carbon and the quaternary
benzene carbon in 2 is 3.233 Å, and that between a
bridging hydrogen and the quaternary benzene carbon
in 3 is 2.478 Å. The C–H bond length (1.082 Å) of the
vinyl group with the C–H interaction in 3 is slightly
shorter than that of the benzene ring (1.086–1.088 Å)
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and the other vinyl part (1.090–1.092 Å). Focusing on
2 or 3 as our ultimate goal to investigate the strain
and interactions in detail, we initially studied the synthe-
sis of diazuleno derivative 4 (Fig. 1). We describe the
synthesis of polyunsaturated [10]cyclophane 4, and
provide X-ray crystallographic analysis of 4 and the
synthetic intermediate 8.
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Figure 1. Various [10]paracyclophanes.
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Scheme 1. Synthesis of 4.
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Figure 2. Results of NOE experiments of 4.

Figure 3. UV–vis spectra of 4 and 8.
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The synthesis of 4 was accomplished as shown in
Scheme 1. The azulene skeleton was constructed by
the modified Yasunami–Takase azulene synthesis.7

Bistrimethysilyl enol ether 58 of commercially available
1,4-diacetylbenzene reacts with 3-methoxycarbonyl-2H-
cyclohepta[b]fura-2-one (6)9 in refluxing decaline for 4
hr to give 1,4-diazulenobenzene derivative 7 in 10%
yield.10 Double elongation of a four-carbon unit in 7
was achieved by electrophilic substitution with 4,4-
dimethoxybutan-2-one under acidic conditions and
subsequent elimination of methanol under basic condi-
tions,11 to afford 8, having all required carbons for 4,
in 28% yield. Stereochemistry of the formed C–C double
bonds in 8 was confirmed as trans by the vicinal
coupling constant in the NMR spectrum. Final intramo-
lecular McMurry coupling12 of 8 using titanium
trichloride and lithium aluminum hydride in refluxing
THF provided compound 4 in 20% yield.13,14

Cyclophane 4 was obtained as stable dark green crystals
with a relatively high melting point. In the 1H NMR
spectrum of 4 in CDCl3, the ethenyl protons in the dim-
ethylhexatrienyl bridge appear at 6.62 (Ha in Fig. 1) and
6.92 (Hb) ppm with a coupling constant of 16.0 Hz,
which indicates that the stereochemistry around the
C–C double bonds attached to the azulene ring remains
as trans. Assignment of the ethenyl protons was con-
firmed by the results of the NOE experiments, as shown
in Figure 2. Their chemical shifts were slightly deshield-
ed compared with those of 8. Since proton chemical
shifts of azulene and benzene rings of 4, 7, and 8 are
similar, they do not interact with each other in these
compounds, thus, indicating an interplanar distortion
between planes of these rings (vide infra). In the UV–
visible spectrum of 4, the long-wave absorption maxi-
mum, corresponding to p–p* excitation of the azulene
part, exhibited a bathochromic shift compared with that
of 8 because of the extended conjugation of two azulene
parts through the hexatriene bridge (Fig. 3).

The crystal structures of 4 and 8 were determined by X-
ray diffraction analysis and are shown in Figures 4 and
5. The interplanar angle between the benzene and
azulene rings in 4 is 70�. The benzene ring of 8 is nearly
planar, while the benzene ring of 4 is non-planar,
possessing a shallow boat form as expected. The bond
angles of the benzene ring are approximately equal to
that estimated for a regular hexagon, and the bond
lengths are in the range 1.372–1.409 Å, exhibiting a dif-
ference between the right and the left parts (Fig. 6). The
bending angles of 4 (Fig. 6) are smaller than those of
tetradehydro[2.2]paracyclophane and are comparable
to the values of the calculated structures of 2 and 3.15

The bond angles and lengths of the azulene part are very



Table 1. Out-of-plane deformation of crystal structures of 8, 10, and
11, as shown by twist angles

Compound Twist angles (in degree) for C1–C3

C4–C10a C5–C9a C6–C8a

8 2.25 9.02 13.30

10b 1.39 4.80 6.56
11b 3.16 7.27 9.69

a Numbering is shown in Figures 6 and 7.
b Taken from Ref. 18b.
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Figure 7. Structures of 1,3-diarylazulenes 10 and 11.

Figure 5. ORTEP drawing of 8.

Figure 4. ORTEP drawings of 4.
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similar to those of 8. The distances between the olefinic
Ha protons and the nearest benzene carbon atoms are
2.509 and 2.479 Å, suggesting the possibility of CH–p
interaction between them.16 Note that the latter distance
is almost equal to the estimated value for 3 (vide ánte).17

Also note that the azulene ring of 8 exhibits out-of-
plane deformation along the short azulene molecular
axis. We recently reported such a deformation in 1,3-
diarylazulenes 10 and 11.18 Twist angles19 for C1–C3
of 8 are greater than those of 10 and 11 (Table 1,
Fig. 7), indicating that 8 has the greatest deformation.

In summary, we constructed the fully unsaturated
[10]paracyclophane framework of 3 annulated by two
azulene rings by four steps from the commercially avail-
able compound. The crystal structure of 4 indicates that
the benzene ring has a shallow boat form and suggests
the possibility of the CH–p interaction. In addition, it
1.372

1.383

1.399

1.399

1.395

1.409

(118.98)(118.16)

(119.66)(121.86)

(122.51)(118.44)
α
β

Figure 6. Bond lengths (Å, bold), bond angles (degree, in parentheses) and
was found that the crystal structure of the synthetic
intermediate 8 showed another example of the azulene
ring distortion along its short azulene molecular axis
with large twist angles.
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